16z^2+137=196z

Simple and best practice solution for 16z^2+137=196z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16z^2+137=196z equation:



16z^2+137=196z
We move all terms to the left:
16z^2+137-(196z)=0
a = 16; b = -196; c = +137;
Δ = b2-4ac
Δ = -1962-4·16·137
Δ = 29648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{29648}=\sqrt{16*1853}=\sqrt{16}*\sqrt{1853}=4\sqrt{1853}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-196)-4\sqrt{1853}}{2*16}=\frac{196-4\sqrt{1853}}{32} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-196)+4\sqrt{1853}}{2*16}=\frac{196+4\sqrt{1853}}{32} $

See similar equations:

| 2g+4(-4+4g)=1-9 | | 8+4(7x+4)=-4. | | 2(3y+4)+4y=48 | | x/6+4=10 | | (6x-10)+(2x-3)=1 | | (4+3x)^5=0 | | 1/3x+40+x-20+x-10=360 | | -4=k/2-7 | | 250+19x=195+24x | | x/6+10=20 | | 9=3–4x+6x | | 10+4x=5(2x) | | 5d^2-3d^2+d=0 | | (10x+22)(7x+34)=90 | | 14+3x=-4x | | x+24+2=-17-24 | | (4x-3)+(x+2)=4 | | F(x)=275+0.03x | | 4x-10=-4x+2214 | | 4v-14+3v=21 | | -4+m/5=-6 | | -12-3y=5 | | 5/8=x+3/4 | | 4+(x+5)=4x+5 | | 0.8*x=33.6 | | -10=(-8+b)/2 | | 6(n+13)=5 | | 2x-22+90=180 | | ⅛(5y64)=¼(20+2y) | | 2x+1=132 | | 2x+28+4x+25=180 | | (2x-3)+(4x-4)=5 |

Equations solver categories